The generator matrix

 1  0  1  1  1 X+2  1  1 2X+2  1  1 3X  1  1  0  1  1 X+2  1  1 2X+2  1  1 3X  1  1  1  1  0 3X  1  1  1  1  1  1  1  1  1  1  1  1 2X+2 X+2 2X 3X+2  2  X  1  1  1  1  1  1  1  1  1  1  1  1
 0  1 X+1 X+2  3  1 2X+2 3X+3  1 3X 2X+1  1  0 X+1  1 X+2  3  1 2X+2 3X+3  1 3X 2X+1  1  0 X+2 X+1 2X+1  1  1 2X+2 3X+3  3 3X+2 3X 2X  2  X 3X+1  1 X+3 2X+3  1  1  1  1  1  1  0 2X 3X+2 3X+2 2X X+2 2X+2 3X  2  X  2 X+2
 0  0 2X  0 2X  0 2X  0 2X 2X  0 2X  0  0  0 2X  0  0 2X 2X 2X  0 2X 2X 2X  0  0 2X 2X  0  0  0 2X 2X  0 2X  0 2X 2X  0 2X  0  0 2X 2X 2X  0  0 2X 2X  0  0  0 2X  0 2X 2X  0 2X 2X
 0  0  0 2X 2X 2X 2X  0  0  0 2X 2X 2X 2X 2X 2X  0  0  0 2X 2X  0  0  0 2X  0  0 2X  0 2X 2X 2X  0  0 2X  0  0 2X 2X  0  0 2X  0 2X 2X  0 2X  0  0 2X 2X  0 2X  0  0 2X  0 2X 2X 2X

generates a code of length 60 over Z4[X]/(X^2+2) who�s minimum homogenous weight is 58.

Homogenous weight enumerator: w(x)=1x^0+328x^58+64x^59+236x^60+64x^61+328x^62+1x^64+2x^88

The gray image is a code over GF(2) with n=480, k=10 and d=232.
This code was found by Heurico 1.16 in 0.125 seconds.